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ABSTRACT

Accurate modeling of personalized head-related transfer
functions (HRTFs) is difficult but critical for applications
requiring spatial audio. However, this remains challenging as
experimental measurements require specialized equipment,
numerical simulations require accurate head geometries and
robust solvers, and data-driven methods are hungry for data.
In this paper, we propose a new deep learning method that
combines measurements and numerical simulations to take
the best of three worlds. By learning the residual difference
and establishing a high quality spatial basis, our method
achieves consistently 2 dB to 2.5 dB lower spectral distortion
(SD) compared to the state-of-the-art methods.

Index Terms— Head-related transfer functions, spatial
principal component analysis, deep learning, boundary ele-
ment methods

1. INTRODUCTION

Accurate modeling of the head-related transfer functions
(HRTFs) is critical for applications requiring spatial audio.
Because of morphological differences, every person has a
unique HRTF, and capturing this personalized HRTF is im-
portant for accurate spatialization [1,2]. Previous works show
that using a generic HRTF for spatialization leads to signifi-
cant perceptual errors such as in-head localization, front-back
confusion, and lowered ability to discriminate source eleva-
tions [3].

While HRTF capture via experimental measurements is
a reliable method for generic HRTFs [4–6], it can be time-
consuming (from minutes [7, 8] to hours, depending on the
configurations), or even impossible to perform depending on
accessibility to the specialized equipment and necessary ex-
pertise in order to obtain robust results. Furthermore, sub-
jects have to remain still in the process, or risk introducing
additional errors.

Numerical simulation of personalized HRTFs is possible
after acquiring a 3D mesh of the subject’s head and sometimes
part of the body. Different formulations include the boundary
element method (BEM) [9] and others [10, 11] can be used.
However, they can introduce errors from various approxima-
tions such as the fast multipole expansion for BEM [12, 13]

or perturbations in the numerical discretization [14]. In addi-
tion, these solvers can be slow although faster methods ex-
ist [15, 16]. Capturing accurate 3D head geometry is also
challenging because of limited scanner resolution, difficulty
in soft tissue modeling, occlusion, and various postprocess-
ing requirements (e.g., hole filling, remeshing). The errors
are worse at high frequencies.

Data-driven methods are increasingly popular for mod-
eling HRTFs. This can be done, for example, by feeding
a subject’s anthropometric parameters through neural net-
works [17–21] to get HRTF predictions. However, the quality
of reconstruction depends on the accuracy and size of the
underlying dataset, which is often quite small [8, 22–25]
compared to other machine learning applications. This lim-
its how expressive the models can be and consequently the
ability to model large variations in personalized HRTFs.

In this paper, we seek a way to combine these differ-
ent methods for better HRTF reconstruction. We propose a
new deep learning method that combines simulations with
measurements. Our model is predictive like those typical
of simulation-based reconstructions, yet versatile and more
expressive for modeling the complex HRTF structures that
might be missing in simulated results (see §5.2). We use a
deep-learning framework based on spatial principal compo-
nent analysis [19]. Instead of training the networks to directly
predict HRTFs, we condition our neural network to learn the
difference between simulations and measurements, thereby
granting it a way to correct inaccurate numerical simulations.
We found that our method achieves consistently lower spec-
tral distortions compared to the state-of-the-art methods by
2 dB to 2.5 dB in all frequencies within hearing range.

2. BACKGROUND

2.1. Spatial principal component analysis

Spatial principal component analysis (SPCA) factorizes
HRTFs using a spatial decomposition [19, 26]:

H(θ, ϕ, f, s) ≈
Q∑
q=1

dq(f, s)Wq(θ, ϕ) +B(θ, ϕ, f, s), (1)

where H represents the ground-truth HRTF (e.g., measure-
ments). Typically, only amplitudes are considered, where
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Fig. 1: Comparison of measured HRTF on the horizontal plane (0 degree elevation angle) with the reconstructed HRTFs from BEM, SPCA-
DNN, and our method. Left Top: HRTFs in decibels; Left Bottom: residual differences between the reconstructed HRTFs and measurement.
Right Top: frequency-dependent HRTF at 90 degree azimuthal angle (ipsilateral); Right Bottom: frequency-dependent HRTF at 270 degree
azimuthal angle (contralateral).

phases can be reconstructed [19]. (θ, ϕ) represents the di-
rection in azimuthal and elevation angles, f is the frequency,
and s is the subject. dq(f, s) contains the weights for the spa-
tial basis Wq(θ, ϕ). B(θ, ϕ, f, s) is what we call a bias. The
SPCA method uses the sampled average as the bias, i.e.,

B(θ, ϕ, f, s) ≡ Hav(θ, ϕ) =
1

N × S
∑
s

∑
f

H(θ, ϕ, f, s)

(2)
for N frequencies and S subjects. Q is the number of basis
functions in the chosen subspace. Let D be the total number
of directions. If Q < D, then the factorization is approxi-
mate; if Q = D, it is exact. In matrix form, the decomposi-
tion (1) can be written as

H = dW +B, (3)

where HRTF H and bias B are NS-by-D matrices. d and
W have dimensions NS-by-Q and Q-by-D, respectively. In
the case of SPCA, the mean is used for the bias term, and thus
B has identical rows for all frequencies and subjects.

Given a choice of Q, both the weights d and basis matrix
W can be computed by extracting the first Q eigenvectors of
the covariance matrix of the mean-centered errors,

E ≡H −B, (4)
Cov = EᵀE. (5)

For convenience, let us define Ehav to be the errors obtained
with bias defined in (2). Although choosing up to D principal
components is possible, this often leads to overfitting, and the
general practice is to choose Q < D such that around 90% of
the variance is captured [17, 19, 27]. The variance is the sum
of the eigenvalues of the covariance matrix. That is,

V ar =

∑Q
q=1 λq∑D
q=1 λq

× 100%. (6)

2.2. Leveraging deep learning to model individual HRTFs

Zhang et al. introduced a deep learning method to further
extend SPCA to model personalized HRTFs [19], hencefor-
ward referred to as SPCA-DNN. This is done by predicting
the weight matrix d, the only term in the SPCA factorization
that depends on the subjects. SPCA-DNN trains N neural
networks, one for each frequency, and each has an identical
architecture of three densely connected layers, to predict the
weight matrix using 8 anthropometric parameters of each sub-
ject, such as the head width and pinna height.

3. OUR APPROACH

In order to take the spectral changes and morphological vari-
ations in personalized HRTFs into account, we propose to re-
place the average bias in SPCA-DNN with a function com-
puted from personalized numerical simulations for each sub-
ject, i.e., we use

B(θ, ϕ, f, s) ≡ Hbem(θ, ϕ, f, s), (7)

where Hbem is an approximate HRTF of the subject using
BEM simulation. Although this choice makes our SPCA no
longer centered around the mean, the benefit is clear: Hbem
utilizes all four independent variables (θ, ϕ, f, s), and can be
much closer to the ground truth, H . Therefore, it reduces
the complexity our basis needs to cover and lowers the er-
ror, Ebem in (4). A comparison of the two errors, Ehav and
Ebem, is shown in Fig. 2. As expected, Ebem is a better pre-
dictor, which results in overall lower magnitude and narrower
error distribution. Of course, this comes with a price due
to the 3D head geometry now required for each user of our
method. Fortunately, 3D scanning is generally more accessi-
ble (e.g., photogrammetry requires only still images captured
on consumer-grade cameras to reconstruct one’s head) than
more specialized HRTF measurement equipment. Further-
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Fig. 2: Histogram of errors (E) introduced by different biases (blue:
Ehav; orange: Ebem). The histogram is averaged over all 58 subjects
in our dataset; the error bars shown in thin lines represent 25 and 75
percentiles of every error bin.

more, our method is insensitive to errors in BEM simulations,
as shown in a later section §5.3.

4. EXPERIMENTAL DESIGN

Our method requires a dataset that contains experimental
measurements of individualized HRTFs and the subjects’
head meshes in order to perform BEM computations.

4.1. Dataset

We use the HUTUBS dataset [24] in this work as it is one of
the few that contains all the required assets. The dataset con-
tains 96 subjects’ measured head-related impulse responses
(HRIRs), 58 head meshes, and a set of 25 anthropometric pa-
rameters for each subject. We first Fourier transform HRIRs
into the frequency domain to obtain HRTFs. Only the ampli-
tudes are kept and stored as logarithms for H in (3). We also
use 8 anthropometric parameters identical to the ones in the
SPCA paper [19].

4.2. Numerical simulation

For numerical simulation, we use the open-source library
MESH2HRTF, which is based on a fast-multipole BEM
solver [28]. For each subject in the dataset, we run a BEM
simulation for each frequency from 100Hz to 20 kHz in in-
crements of 100Hz and sample the solution at 440 collocated
spatial directions on a 1.47m shell away from the subject’s
head center. All BEM simulations were performed on a sin-
gle workstation (dual Intel Xeon E5-2690V3 processors); the
principle of reciprocity is used to save computational time.

The 3D head models are adaptively remeshed to ensure
solver performance. The procedure is identical to that de-
scribed in [24, 28], which gradually coarsens the mesh from
the ipsilateral ear at 1mm to the contralateral ear at 10mm.
We were concerned that the resolution on the 10mm side
might be too coarse, so we perform studies on meshes at
1mm-8mm, 1mm-6mm, 1mm-5mm, and 1mm-4mm
resolutions. We found no significant influence of this choice
on our results, similar to previous work [29].
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Fig. 3: Average spectral distortions for BEM, SPCA-DNN, and
our method. The average SD across all subjects and frequencies are
7.23 dB, 6.89 dB, 4.80 dB for BEM, SPCA-DNN, and our method,
respectively.

4.3. Neural networks and training

We closely follow the original SPCA-DNN method intro-
duced in §2.2 to train our neural networks. Each weight
network takes 8 anthropometric parameters from a user and
predicts a 1-by-Q submatrix in the weight matrix d for a
frequency sample. Since the Fourier transform is conjugate
symmetric with respect to the frequencies for real-valued
HRIRs, and only the amplitudes are modeled, there are in to-
tal dN/2e+ 1 networks. To avoid overfitting, we employ the
same strategy as in SPCA-DNN to split subjects into training,
validation, and testing sets, and perform k-fold cross valida-
tion during training. Early stopping is also used to prevent
significantly increased validation errors. The mean squared
error (MSE) of training, validation, and test sets are 14.59,
13.65, and 15.83 respectively. No overfitting was detected for
our model.

Similar to SPCA-DNN [19], we train an additional neu-
ral network with 5 densely connected layers in order to pre-
dict HRTF in an arbitrary direction. We found that this added
complexity only contributes an insignificant portion (around
0.13 dB) to the overall error.

5. RESULTS & ANALYSIS

Our method is analyzed in this section. The distance between
any two HRTFs, H and Ĥ , is measured by the frequency-
dependent spectral distortion (SD) [14, 19]:

SD(f) =
1

DS

∑
s

∑
θ

∑
φ

|H(θ, ϕ, f, s)− Ĥ(θ, ϕ, f, s)|.

(8)
H is typically the ground-truth measurement.

5.1. Quantitative analysis

In Fig. 3, we show that SDs of our method are lower than
those of the baselines in all frequencies. On average our



Method All directions Hori. plane Med. plane
BEM 7.23 6.18 8.65

SPCA-DNN 6.89 7.25 3.89
Ours 4.80 4.62 4.54
Table 1: Average SDs for different sets of directions.

method achieves around a 2.43 dB (≈ 33%) improvement
over BEM, and a 2.09 dB (≈ 30%) improvement over SPCA-
DNN. A similar level of improvement is achieved if we
restrict the directional samples to those of the horizontal
plane (0 elevation angle). On the median plane, SPCA-DNN
method results in lower error, but our method is only 0.65 dB
behind in performance. Despite the slightly higher error,
our method captures clearer HRTF features compared to
SPCA-DNN (e.g., see Fig. 4). We perform a T-test on every
frequency and find that statistically our method produces sig-
nificantly lower errors compared to BEM and SPCA-DNN
(p � 0.05 for both baselines). Due diligence was performed
to ensure assumptions of T-test (e.g., variance correction) are
satisfied.

5.2. Qualitative analysis

HRTFs reconstructed using our method often have several
qualitative characteristics that resemble ground-truth HRTFs
that might be lacking in other methods. In particular, we find
that our method can produce spectral notches and peaks that
closely follow ones from the measurement (see Fig. 1, Fig. 4).
This is missing from the SPCA-DNN results, where smoother
variations are typically found. On the other hand, BEM com-
pletely misses the shadowing effects of the torso for HRTFs
in lower elevations (e.g., see the values at −90 deg in Fig. 4)
due to missing torsos in the input mesh, where our method
and SPCA-DNN reconstruct these regions successfully.

In the high frequency region (e.g., >10 kHz), BEM and
SPCA-DNN methods both show increasing errors, while our
method produces results that match with the measurements
consistently and thus generates a flat error profile. This is use-
ful because higher frequencies are notoriously harder to sim-
ulate and measure, yet by combining them our model learns
to maintain error levels. Based on this observation, we ex-
pect HRTFs generated by our model to perform consistently
in high frequencies and work better in certain scenarios (e.g.,
high-pitched source in complex scenes).

The level of SD reduction introduced by our method
(§5.1) can lead to improvements in perception by reducing the
front-back reversal rate and azimuth perception errors, similar
to prior work where similar SD reductions were found [30].

5.3. Accuracy and performance

We analyze resilience and error tolerance of our model. The
errors are parametrized by performing a series of BEM sim-
ulations on 4 different frequencies and for 4 different mesh
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Fig. 4: Comparison of measured HRTF in decibels on the median
plane with the reconstructed HRTFs from BEM, SPCA-DNN, and
ours.
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resolutions. The convergence results of this study that covers
all 58 subjects in the dataset are shown in Fig. 5. As expected,
the BEM solution converges when compared to BEM run on
the highest mesh resolution (BEM-BEM). However, there
is a persistent discrepancy when compared to measurement
(BEM-Exp) because BEM actually converges to a wrong dis-
tribution. This explains why our results are not significantly
improved even if highest quality BEM simulation is used
(Ours-Exp) as Ebem remains similar. Therefore, for appli-
cations more tolerant on HRTF accuracy, using our method
with lower mesh resolution will save a lot of processing time,
since BEM typically scales quadratically with the number of
mesh elements. It will be interesting for future work to look
into this performance-accuracy tradeoff further and leverage
lower resolution BEM input with learning-based corrections.

6. CONCLUSION

We introduced a novel deep learning method that combines
measurements and numerical simulations to obtain good-
quality personalized HRTFs. Our method outperforms BEM
and SPCA-DNN methods in SD for all frequencies. HRTFs
generated by our model have salient spectral and spatial struc-
tures important to sound localization tasks. Our convergence
analysis shows that our method is insensitive to the fidelity of
BEM simulation.
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